Effective pressure and bubble generation in a microfluidic T-junction.

نویسندگان

  • An-Bang Wang
  • I-Chun Lin
  • Yu-Wen Hsieh
  • Wen-Pin Shih
  • Guan-Wei Wu
چکیده

To improve the existing trial-and-error process in designing a microfluidic T-junction, a systematic study of the geometrical (mainly the channel length) effects on the generated bubbly/slug flow was conducted to figure out basic design guidelines based on experimental and theoretical analyses. A driving system with dual constant pressure sources, instead of the commonly used dual constant volume-rate sources (such as two syringe pumps), was chosen in this study. The newly proposed effective pressure ratio (P(e)*) has revealed its advantages in excluding the surface tension effect of fluids. All the data of generated bubbly/slug flow for a given geometry collapse excellently into the same relationship of void fraction and effective pressure ratio. This relationship is insensitive to the liquid viscosity and the operation range is strongly affected by the geometrical effect, i.e., the channel length ratio of downstream to total equivalent length of the main channel in a T-junction chip. As to the theoretical design and analysis of gas-liquid-flow characteristics in a microfluidic T-junction, which is still sporadic in the literature, the proposed semi-empirical model has successfully predicted the operation boundaries and the output flow rate of bubbly/slug flow of different investigated cases and demonstrated its usability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circuit model for microfluidic bubble generation under controlled pressure

We explore the microfluidic generation of bubbles in a flow-focusing junction using a pressure-controlled device rather than the more common flow ratecontrolled devices. This device is a prototype for extending microfluidic drop generation methods to molten polymers. We show that the bubble generation process is highly sensitive to pressure: small changes in pressure induce large changes in bub...

متن کامل

Propionic acid extraction in a microfluidic system: simultaneous effects of channel diameter and fluid flow rate on the flow regime and mass transfer

In this work, extraction of propionic acid from the aqueous phase to the organic phase (1-octanol) was performed in T-junction microchannels and effects of channel diameter and fluid flow rate on the mass transfer characteristics were investigated. The two-phase flow patterns in studied microchannels with 0.4 and 0.8 mm diameters were observed. Weber ‎ number and surface-to-volume ratio were ca...

متن کامل

Use of a porous membrane for gas bubble removal in microfluidic channels: physical mechanisms and design criteria

We demonstrate and explain a simple and efficient way to remove gas bubbles from liquid-filled microchannels, by integrating a hydrophobic porous membrane on top of the microchannel. A prototype chip is manufactured in hard, transparent polymer with the ability to completely filter gas plugs out of a segmented flow at rates up to 7.4 ll/s/mm of membrane area. The device involves a bubble genera...

متن کامل

3D-CFD and experimental comparison of two-phase ow generation in a micro T-junction

This paper presents a 3D numerical study of the bubble generation process in a T-junction, performed with the commercial Computational Fluid Dynamics solver ANSYS Fluent v15.0.7. Numerical results on bubble generation frequency, bubble velocity, volume void fraction, bubble volume, and characteristics bubble lengths are compared with experimental data. Additionally, a new simple tting for the b...

متن کامل

Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.

This article describes the process of formation of droplets and bubbles in microfluidic T-junction geometries. At low capillary numbers break-up is not dominated by shear stresses: experimental results support the assertion that the dominant contribution to the dynamics of break-up arises from the pressure drop across the emerging droplet or bubble. This pressure drop results from the high resi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 11 20  شماره 

صفحات  -

تاریخ انتشار 2011